BMATC101 Mathematics for Civil Engg Stream
Syllabus Copy
Module - 1
Calculus
Introduction to polar coordinates and curvature relating to Civil engineering. Polar coordinates, Polar curves, angle between the radius vector and the tangent, and angle between two curves. Pedal equations. Curvature and Radius of curvature – Cartesian, Parametric, Polar and Pedal forms. Problems. Self-study: Center and circle of curvature, evolutes and involutes. Applications:Structural design and paths, Strength of materials, Elasticity.
Module - 2
Series Expansion and Multivariable Calculus
Introduction to series expansion and partial differentiation in the field of Civil engineering applications. Taylor’s and Maclaurin’s series expansion for one variable (Statement only) – problems. Indeterminate forms – L’Hospital’s rule, problems. Partial differentiation, total derivative – differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables – Problems. Self-study: Euler’s theorem and problems. Method of Lagrange’s undetermined multipliers with single constraint. Applications: Computation of stress and strain, Errors and approximations, Estimating the critical points and extreme values.
Module - 3
Ordinary Differential Equations (ODEs) of First Order
Introduction to first-order ordinary differential equations pertaining to the applications for Civil engineering. Linear and Bernoulli’s differential equations. Exact and reducible to exact differential equations – Integrating factors on 1 𝑁 ( 𝜕𝑀 𝜕𝑦 − 𝜕𝑁 𝜕𝑥) 𝑎𝑛𝑑 1 𝑀 ( 𝜕𝑁 𝜕𝑥 − 𝜕𝑀 𝜕𝑦). Orthogonal trajectories and Newton’s law of cooling. Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut’s equations,reducible to Clairaut’s equations – Problems. Self-Study: Applications of ODEs in Civil Engineering problems like bending of the beam, whirling of shaft,solution of non-linear ODE by the method of solvable for x and y. Applications: Rate of Growth or Decay, Conduction of heat.
Module - 4
Ordinary Differential Equations of Higher Order
Importance of higher-order ordinary differential equations in Civil engineering applications. Higher-order linear ODEs with constant coefficients – Inverse differential operator, method of variation of parameters, Cauchy’s and Legendre’s homogeneous differential equations -Problems. Self-Study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients. Applications: Oscillations of a spring, Transmission lines, Highway engineering.
Module - 5
Linear Algebra
Introduction of linear algebra related to Civil engineering applications. Elementary row transformationofa matrix, Rank of a matrix. Consistency and solution of a system of linear equations – Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh’s power method to find the dominant Eigenvalue and Eigenvector. Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem. Applications: Structural Analysis, Balancing equations.